Categories
Blog software safety

Software Safety Assurance and Standards

This post, Software Safety Assurance and Standards, is the fifth in a series of six blog posts on Principles of Software Safety Assurance. In it, we look at the 4+1 principles that underlie all software safety standards. (The previous post in the series is here.)

Read on to Benefit from…

In this post, we assess how well specific, popular standards apply the 4+1 Principles. In particular, I add some insights from my experience in large-scale software projects (since 1994) to give further commentary. My comments are [shown thus].

The perfect software safety standard doesn’t exist. Arguably, it never will, as standards must be generic to ensure that they are widely applicable, whereas software projects may have particular needs. However, if we understand these standards we can discover their weaknesses and tailor them, and/or add to them accordingly.

Content

We outline common software safety assurance principles that are evident in software safety standards and best practices. You can think of these guidelines as the unchanging foundation of any software safety argument because they hold true across projects and domains.

The principles serve as a guide for cross-sector certification and aid in maintaining comprehension of the “big picture” of software safety issues while evaluating and negotiating the specifics of individual standards.

Relationship to Existing Software Safety Standards

The ideas of software safety assurance discussed in this article are not explicit in most software safety standards, though they are typically present. However, by concentrating only on adherence to the letter of these standards, software developers using these standards are likely to lose sight of the primary goals (e.g. through box-ticking). We look at manifestations of each of the Principles in some of the most popular software safety standards below – IEC 61508, ISO 26262, and DO 178C.

Principle 1

IEC 61508 and ISO 26262 both demonstrate how hazard analysis at the system level and software safety criteria have been linked. High-level requirements that address system requirements assigned to software to prevent system risks must be defined, according to DO-178C. Particularly when used in conjunction with companion standard ARP 4754, this addresses Principle 1.

[In military aviation, I’m used to seeing Do-178 used in conjunction with Mil-Std-882. This also links hazard analysis to software safety requirements, although perhaps not as thoroughly as ARP 4754.]

Principle 2

Traceability in software needs is always required. The standards also place a strong emphasis on the software requirements’ iterative validation.

Specific examples of requirements decomposition models are provided by DO-178C and ISO26262. Capturing the justification for the required traceability is an area where standards frequently fall short (a crucial aspect of Principle 2).

What is particularly lacking is a focus on upholding the purpose of the software safety rules. Richer types of traceability that take the requirements’ purpose [intent] into account rather than just syntactic ones at various phases of development are needed for this.

Principle 3

The basis of the software safety standards is guidance on requirement satisfaction. Although there are distinct disparities in the advised methods of pleasure, this principle is generally thoroughly addressed (for example DO-178 traditionally placed a strong emphasis on testing).

[Def Stan 00-55 places more emphasis on proof, not just testing. However, this onerous software safety standard has fallen out of fashion.]

Principle 4

This requires that the absence of mistakes introduced during the software lifetime be demonstrated. Aspects of this principle can be seen in the standards. However, of all the standards, the software hazard analysis part receives the least attention.

[N.B. The combination of Mil-Std-882E and the Joint Software Systems Safety Engineering Handbook places a lot of emphasis on this aspect.]

The standards imply that system-level safety analysis is a process. The purpose of software development is to prove that requirements, including safety requirements assigned to software, as produced by system-level procedures, are correct. At later phases of the development process, these criteria are refined and put into practice without explicitly applying software hazard analysis.

There is no specific requirement in DO 178C to identify “emerging” safety risks during software development, but it does permit recognized safety issues to be transmitted back to the system level.

Principle 4+1

All standards share the idea of modifying the software assurance strategy in accordance with “risk.” However, there are significant differences in how the software’s criticality is assessed. IEC 61508 establishes a Safety Integrity Level based on the probability delta in risk reduction, DO-178B emphasizes severity, and ISO 26262 adds the idea of the vehicle’s controllability. At various levels of criticality, the suggested strategies and processes vary greatly as well.

[The Mil-Std-882E approach is to set a ‘level of rigor’ for software development. This uses a combination of mishap severity and the reliance placed on the software to set the level.]

Software Safety Assurance and Standards: End of Part 5 (of 6)

This blog post is derived from ‘The Principles of Software Safety Assurance’, RD Hawkins, I Habli & TP Kelly, University of York. The original paper is available for free here. I was privileged to be taught safety engineering by Tim Kelly, and others, at the University of York. I am pleased to share their valuable work in a more accessible format.

Meet the Author

My name’s Simon Di Nucci. I’m a practicing system safety engineer, and I have been, for the last 25 years; I’ve worked in all kinds of domains, aircraft, ships, submarines, sensors, and command and control systems, and some work on rail air traffic management systems, and lots of software safety. So, I’ve done a lot of different things!

Principles of Software Safety Training

Learn more about this subject in my course ‘Principles of Safe Software’ here. The next post in the series is here.

My course on Udemy, ‘Principles of Software Safety Standards’ is a cut-down version of the full Principles Course. Nevertheless, it still scores 4.42 out of 5.00 and attracts comments like:

  • “It gives me an idea of standards as to how they are developed and the downward pyramid model of it.” 4* Niveditha V.
  • “This was really good course for starting the software safety standareds, comparing and reviewing strengths and weakness of them. Loved the how he try to fit each standared with4+1 principles. Highly recommend to anyone that want get into software safety.” 4.5* Amila R.
  • “The information provides a good overview. Perfect for someone like me who has worked with the standards but did not necessarily understand how the framework works.” 5* Mahesh Koonath V.
  • “Really good overview of key software standards and their strengths and weaknesses against the 4+1 Safety Principles.” 4.5* Ann H.
Categories
Blog software safety

Software Safety Principles 2 and 3

Software Safety Principles 2 and 3 is the second in a new series of blog posts on Principles of Software Safety Assurance. In it, we look at the 4+1 principles that underlie all software safety standards. (The previous blog post is here.)

We outline common software safety assurance principles that are evident in software safety standards and best practices. You can think of these guidelines as the unchanging foundation of any software safety argument because they hold true across projects and domains.

The principles serve as a guide for cross-sector certification and aid in maintaining comprehension of the “big picture” of software safety issues while evaluating and negotiating the specifics of individual standards.

Principle 2: Requirement Decomposition

The second software safety principle is:

Principle 2: The intent of the software safety requirements shall be maintained throughout requirements decomposition.

‘The Principles of Software Safety Assurance’, RD Hawkins, I Habli & TP Kelly, University of York.

The requirements and design are gradually broken down as the software development lifecycle moves forwards, leading to the creation of a more intricate software design. The term “derived software requirements” refers to the criteria that were derived for the more intricate software design. The intent of those criteria must be upheld as the software safety requirements are broken down once they have been established as comprehensive and accurate at the highest (most abstract) level of design.

An example of the failure of requirements decomposition is the crash of Lufthansa Flight 2904 at Warsaw on 14 September 1993.

In essence, the issue is one of ongoing requirements validation. How do we show that the requirements expressed at one level of design abstraction are equal to those defined at a more abstract level? This difficulty arises constantly during the software development process.

It is insufficient to only consider requirements fulfillment. The software safety requirements had been met in the Flight 2904 example. However, they did not match the intent of the high-level safety requirements in the real world.

Human factors difficulties (a warning may be presented to a pilot as necessary, but that warning may not be noticed on the busy cockpit displays) are another consideration that may make the applicability of the decomposition more challenging.

Ensuring that all necessary details are included in the first high-level need is one possible theoretical solution to this issue. However, it would be difficult to accomplish this in real life. It is inevitable that design choices requiring more specific criteria will be made later in the software development lifecycle. It is not possible to accurately know this detail until that design choice has been made.

The decomposition of safety criteria must always be handled if the program is to be regarded as safe to use.

Requirements Satisfaction

The third software safety assurance principle is:

Principle 3: Software safety requirements shall be satisfied.

‘The Principles of Software Safety Assurance’, RD Hawkins, I Habli & TP Kelly, University of York.

It must be confirmed that a set of “valid” software safety requirements has been met after they have been defined. This set may be assigned software safety requirements (Principle 1), or refined or derived software safety requirements (Principle 2). The fact that these standards are precise, well-defined, and actually verifiable is a crucial need for their satisfaction.

The sorts of verification techniques used to show that the software safety requirements have been met will vary on the degree of safety criticality, the stage of development, and the technology being employed. Therefore, attempting to specify certain verification methodologies that ought to be employed for the development of verification findings is neither practical nor wise.

Mars Polar Lander was an ambitious mission to set a spacecraft down near the edge of Mars’ south polar cap and dig for water ice. The mission was lost on arrival on December 3, 1999.

Given the complexity and safety-critical nature of many software-based systems, it is obvious that using just one type of software verification is insufficient. As a result, a combination of verification techniques is frequently required to produce the verification evidence. Testing and expert review are frequently used to produce primary or secondary verification evidence. However, formal verification is increasingly emphasized because it may more reliably satisfy the software safety standards.

The main obstacle to proving that the software safety standards have been met is the evidence’s inherent limitations as a result of the methods described above. The characteristics of the problem space are the root of the difficulties.

Given the complexity of software systems, especially those used to achieve autonomous capabilities, there are challenges with completeness for both testing and analysis methodologies. The underlying logic of the software can be verified using formal methods, but there are still significant drawbacks. Namely, it is difficult to provide assurance of model validity. Also, formal methods do not deal with the crucial problem of hardware integration.

Clearly, the capacity to meet the stated software safety requirements is a prerequisite for ensuring the safety of software systems.

Software Safety Principles 2 & 3: End of Part 2 (of 6)

This blog post is derived from ‘The Principles of Software Safety Assurance’, RD Hawkins, I Habli & TP Kelly, University of York. The original paper is available for free here. I was privileged to be taught safety engineering by Tim Kelly, and others, at the University of York. I am pleased to share their valuable work in a more accessible format.

Meet the Author

My name’s Simon Di Nucci. I’m a practicing system safety engineer, and I have been, for the last 25 years; I’ve worked in all kinds of domains, aircraft, ships, submarines, sensors, and command and control systems, and some work on rail air traffic management systems, and lots of software safety. So, I’ve done a lot of different things!

Learn more about this subject in my course ‘Principles of Safe Software’ here. The next post in the series is here.