Categories
Mil-Std-882E Safety Analysis System Safety

System Requirements Hazard Analysis

In this 45-minute session, I’m looking at System Requirements Hazard Analysis, or SRHA, which is Task 203 in the Mil-Std-882E standard. I will explore Task 203’s aim, description, scope, and contracting requirements.  SRHA is an important and complex task, which must be done on several levels to succeed.  This video explains the issues and discusses how to perform SRHA well.

This is the seven-minute demo video, the full version is 40 minutes’ long.

Topics: System Requirements Hazard Analysis

  • Task 202 Purpose;
  • Task Description:
    • Determine Requirements;
    • Incorporate Requirements; and
    • Assess the compliance of the System.
  • Contracting;
  • Section 4.2 (of the standard); and
  • Commentary.

Transcript

Introduction

Hello and welcome to the Safety Artisan, where you will find professional, pragmatic and impartial advice on all things system, safety and related.

System Requirements Hazard Analysis

Today, we’re talking about system requirements hazard analysis. And this is part of our series on Mil. Standard 882E, and this one is Task 203. And it’s a very widely used system safety engineering standard. Its influence is found in many places, not just in military procurement programs.

Topics for this Session

We’re looking at this task, which is very important, possibly the most important task of all, as we’ll see. I’m talking about the purpose of the task, which is word-for-word from the task description itself.

We’re talking about in the task description, the three aims of this task, which is to determine or work out requirements, incorporate them, and then assess the compliance of the system with those requirements, because, of course, it may not be a simple read-across. We’ve got six slides on that. That’s most of the task.

Then we’ve just got one slide on contracting, which if you’ve seen any of the others in this series, will seem very familiar. We’ve got a bit of a chat about Section 4.2 from the standard and some commentary, and the reason for that will become clear. Let’s crack on!

System Requirements Hazard Analysis

Task 203.1, the purpose of Task 203 is to perform and document a System Requirements Hazard Analysis or SRHA. And as we’ve already said, the purpose of this is to determine the design requirements. We’re going to focus on design rather than buying stuff off the shelf – we’ll talk about the implications of that a little bit later.

Design requirements to eliminate or reduce hazards and risks, incorporate those requirements, into a says, into the documentation, but what it should say is incorporate risk reduction measures into the system itself and then document it.

Finally, to assess compliance of the system with these requirements. Then it says the SRHA address addresses all life-cycle phases, so not just meant for you to think about certain phases of the program. What are the requirements through life for the system? And in all modes. Whether it’s in operation, whether it’s in maintenance or refit, whether it’s being repaired or disposed of, whatever it might be.

Task Description #1

The first of six slides is the task description. I’m using more than one colour because there’s some quite a lot of important points packed quite tightly together in this description.

We’re assuming that the contractor performs and documents this SRHA. The customer needs to do a lot of work here before ever gets near a contractor. More on that later. We need to determine system design requirements to eliminate hazards or reduce associated risks.

Two things here. By identifying applicable policies, regulations, standards, etc. More on that later. And analyzing identified hazards. So, requirements to perform the analysis as well as to simply just state ‘We want a system to do this and not to do that’. So, we need to put some requirements to say ‘Here’s what we want analyzed maybe to what degree? And why.’ is always helpful.

Task Description #2

Breaking those breaking those two requirements down.

Part a. We identify applicable requirements by reviewing our military and industry standards and specs, and historical documentation of systems that are similar or with a system that we’re replacing, perhaps. It’s assumed that the US Department of Defense is the customer, the ultimate customer. So, the ultimate customer’s requirements, including whatever they’ve said about standard ways of mitigating certain common risks.

The system performance spec, that’s your functional performance spec or whatever you want to call it. Other system design requirements and documents – a bit of a catchall there. And applicable federal, military, state, and local regulations.

This is a US standard. It’s a federated state, much like Australia and lots of modern states, even the UK. There are variations in law across England, Wales, Scotland and Ireland. They’re not great, but they do exist.

And in the US and Australia, those differences are greater. And it says applicable executive orders. Executive orders, they’re not law, but they are what the executive arm of the U.S. government has issued, and international agreements. There are a lot of words in there – have a look at the different statements that are in white, blue, and yellow.

Basically, from international agreements right down to whatever requirements may be applicable, they all need to be looked at and accounted for. So, there’s a huge amount of work there for someone to do. I’ll come back to who that someone should be later.

End: System Requirements Hazard Analysis

You can find a free pdf of the System Safety Engineering Standard, Mil-Std-882E, here.

Meet the Author

Learn safety engineering with me, an industry professional with 25 years of experience, I have:

•Worked on aircraft, ships, submarines, ATMS, trains, and software;

•Tiny programs to some of the biggest (Eurofighter, Future Submarine);

•In the UK and Australia, on US and European programs;

•Taught safety to hundreds of people in the classroom, and thousands online;

•Presented on safety topics at several international conferences.

Categories
Blog System Safety

Foundations of System Safety

So today, we’re talking about the Foundations of System Safety assessment. And as it says, it’s a free webinar from The Safety Artisan, and it’s one of a series.

Webinar Highlights

So, before we go on, I’ll just introduce myself.

Why should you bother to listen to me?

Well, in 25 years of experience in system safety, I’ve worked on a lot of different stuff: aircraft, fast jets, big aircraft, helicopters, reconnaissance, and EW platforms; surface ships and submarines; air traffic management systems; a little bit on trains and road vehicles; and lots and lots of software.

And I worked on some nice little programs, which is great. That’s always good fun. And some enormous programs, not all of which succeeded.

So you get a range of perspectives from me on that, and you get to learn from other people’s mistakes. Bismarck said that was a good idea because we don’t have time to make all the mistakes in one lifetime.

I worked in the UK for many years and now 10 years in Australia. And I’ve worked on introducing a lot of US and European programs to those countries.

It’s a wide range of experiences. I’ve had the privilege of teaching safety to hundreds of people in the classroom, and thousands online. And I’ve also been lucky enough to present on safety topics at several international conferences.

However, the proof of the pudding is in the eating, as they say. So let’s get on with it. So, the webinar topic is the Foundations of System Safety. So, what are they, and how do we set them up for a successful project? That’s what we want.

The Webinar: Foundations of System Safety

See the whole webinar at the Safety Engineering Academy. (You can get discounts on membership by subscribing to my free emails.)

Course Curriculum

  1. Introduction
  2. Preliminary Hazard Identification (Task 201)
  3. Preliminary Hazard Analysis (Task 202)
  4. System Requirements Hazard Analysis (Task 203)
  5. Safety Analysis Techniques Overview

There are 18 lessons with four hours of video content, plus other resources. See the Foundations of System Safety here.

Meet the Author

Learn safety engineering with me, an industry professional with 25 years of experience, I have:

•Worked on aircraft, ships, submarines, ATMS, trains, and software;

•Tiny programs to some of the biggest (Eurofighter, Future Submarine);

•In the UK and Australia, on US and European programs;

•Taught safety to hundreds of people in the classroom, and thousands online;

•Presented on safety topics at several international conferences.

Categories
Blog Mil-Std-882E Safety Analysis

How to do Preliminary Hazard Analysis with Mil-Std-882E

In this 45-minute session, I look at how to do a Preliminary Hazard Analysis with Mil-Std-882E. Preliminary Hazard Analysis, or PHA, is Task 202 in the Standard.

I explore Task 202’s aim, description, scope, and contracting requirements. There’s value-adding commentary, and I explain the issues with PHA – how to do it well and avoid the pitfalls.

Now, I have worked in System Safety since 1996, and I think that PHA is one of the three tasks that EVERY project needs to do. The other two are:

I look at these three tasks together in my course ‘Foundations of Safety Assessment’. This is one of five linked courses on Mil-Std-882E. They will teach you how to get the maximum benefits from your System Safety Program.

This is the seven-minute-long demo video. The full video is 45 minutes long.

Topics: How to do Preliminary Hazard Analysis

  • Task 202 Purpose;
  • Task Description;
  • Recording & Scope;
  • Risk Assessment (Tables I, II & III);
  • Risk Mitigation (order of preference);
  • Contracting; and
  • Commentary.

Transcript: How to do Preliminary Hazard Analysis

Hello and welcome to the Safety Artisan, where you’ll find professional, pragmatic, and impartial safety training resources. So, we’ll get straight on to our session, which is on the 8th of February 2020.

Preliminary Hazard Analysis

Now we’re going to talk today about Preliminary Hazard Analysis (PHA). This is Task 202 in Military Standard 882E, which is a system safety engineering standard. It’s very widely used mostly on military equipment, but it does turn up elsewhere.  This standard is of wide interest to people and Task 202 is the second of the analysis tasks. It’s one of the first things that you will do on a systems safety program and therefore one of the most informative. This session forms part of a series of lessons that I’m doing on Mil-Std-882E.

Topics for This Session

What are we going to cover in this session? Quite a lot! The purpose of the task, a task description, recording, and scope. How we do risk assessments against Tables 1, 2, and 3. These tables describe severities, likelihoods, and the overall risk matrix.  We will talk about all three, about risk mitigation and using the order of preference for risk mitigation, a little bit of contracting, and then a short commentary from myself. I’m providing commentary all the way through. So, let’s crack on.

Task 202 Purpose

The purpose of Task 202, as it says, is to perform and document a preliminary hazard analysis, or PHA for short, to identify hazards, assess the initial risks, and identify potential mitigation measures. We’re going to talk about all of that.

Task Description

First, the task description is quite long here. And as you can see, I’ve highlighted some stuff that I particularly want to talk about.

It says “the contractor” [does this or that], but it doesn’t matter who is doing the analysis, and, the customer needs to do something to inform themselves, otherwise they won’t understand what they’re doing.  Whoever does it needs to perform and document a PHA. It’s about determining initial risk assessments. There’s going to be more work, more detailed work done later. But for now, we’re doing an initial risk assessment of identified hazards. And those hazards will be associated with the design or the functions we propose to introduce. That’s very important. We don’t need a design to do this. We can get in early when we have user requirements, functional requirements, and that kind of thing.

Doing this work will help us make better requirements for the system. So, we need to evaluate those hazards for severity and probability. It says based on the best available data. And of course, early in a program, that’s another big issue. We’ll talk about that more later. It says to include mishap data as well, if accessible: American term mishap, means an accident, but we’re avoiding any kind of suggestion about whether it is accidental or deliberate.  It might be stupidity, deliberate, or whatever. It’s a mishap. It’s an undesirable event.

We look for accessible data from similar systems, legacy systems, and other lessons learned. I’ve talked about that a little bit in the Task 201 lesson, and there’s more on that today under commentary. We need to look at provisions, and alternatives, meaning design provisions and design alternatives to reduce risks and add mitigation measures to eliminate hazards. If we can all reduce associated risk, we need to include all of that. What’s the task description? That’s a good overview of the task and what we need to talk about.

Reading & Scope

First, recording and scope, as always, with these tasks, we’ve got to document the results of the PHA in a hazard tracking system. Now, a word on terminology; we might call a hazard tracking system; we might call it a hazard log; we might call it a risk register. It doesn’t matter what it’s called. The key point is it’s a tracking system. It’s a live document, as people say, it’s a spreadsheet or a database, something like that. It’s something relatively easy to update and change.

Also, we can track changes through the safety program once we do more analysis because things will change. We should expect to get some results and refine them and change them as time goes on. Very important point.

That’s it for the Demo…

End: How to do Preliminary Hazard Analysis

Learn safety engineering with me, an industry professional with 25 years of experience, I have:

•Worked on aircraft, ships, submarines, ATMS, trains, and software;

•Tiny programs to some of the biggest (Eurofighter, Future Submarine);

•In the UK and Australia, on US and European programs;

•Taught safety to hundreds of people in the classroom, and thousands online;

•Presented on safety topics at several international conferences.

You can find a free pdf of the System Safety Engineering Standard, Mil-Std-882E, here.