Categories
Safe Design

Good Work Design

The content of this post is taken from the ‘Principles of Good Work Design’ handbook from Safe Work Australia. The handbook is © Commonwealth of Austr​alia, 2019; this document is covered by a Creative Commons licence (CCBY 4.0) – for full details see here.

Some changes have been made to the guidance in order to improve Search Engine Optimisation and correct minor problems with Figure numbering in the original document. All changes are indicated [thus].

Introduction

The Australian Work Health and Safety Strategy 2012-2022 is underpinned by the principle that well-designed healthy and safe work will allow workers to have more productive lives. This can be more efficiently achieved if hazards and risks are eliminated through good design.

The ten principles of good work design

This handbook contains ten principles which demonstrate how to achieve good design of work and work processes. Each is general in nature so they can be successfully applied to any workplace, business or industry.

The ten principles for good work design are structured into three sections:

  1. Why good work design is important
  2. What should be considered in good work design, and
  3. How good work is designed

These principles are shown in the diagram at Figure 1.

This handbook complements a range of existing resources available to businesses and work health and safety professionals including guidance for the safe design of plant and structures see the Safe Work Australia Website.

Scope of the handbook

This handbook provides information on how to apply the good work design principles to work and work processes to protect workers and others who may be affected by the work. 

It describes how design can be used to set up the workplace, working environment and work tasks to protect the health and safety of workers, taking into account their range of abilities and vulnerabilities, so far as reasonably practicable.

The handbook does not aim to provide advice on managing situations where individual workers may have special requirements such as those with a disability or on a return to work program following an injury or illness. Contact your regulator for further information.

Who should use this handbook?

This handbook should be used by those with a role in designing work and work processes, including:

  • Persons conducting a business or undertaking (PCBUs) with a primary duty of care under the model Work Health and Safety (WHS) laws.
  • PCBUs who have specific design duties relating to the design of plant, substances and structures including the buildings in which people work.
  • People responsible for designing organisational structures, staffing rosters and systems of work.
  • Professionals who provide expert advice to organisations on work health and safety matters.

Good work design optimises work health and safety, human performance, job satisfaction, and business success.

Information: Experts who provide advice on the design of work may include: engineers, architects, ergonomists, information and computer technology professionals, occupational hygienists, organisational psychologists, human resource professionals, occupational therapists and physiotherapists.

Figure 1 – Good work design principles

An image of good work design principles

What is ‘good work’?

‘Good work’ is healthy and safe work where the hazards and risks are eliminated or minimised so far as is reasonably practicable. Good work is also where the work design optimises human performance, job satisfaction and productivity.

Good work contains positive work elements that can:

  • protect workers from harm to their health, safety and welfare
  • improve worker health and wellbeing, and
  • improve business success through higher worker productivity.

What is good work design?

The most effective design process begins at the earliest opportunity during the conceptual and planning phases. At this early stage there is the greatest chance of finding ways to design-out hazards, incorporate effective risk control measures and design-in efficiencies.

Effective design of good work considers:

The work:

  • how work is performed, including the physical, mental and emotional demands of the tasks and activities
  • the task duration, frequency, and complexity, and
  • the context and systems of work.

The physical working environment:

  • the plant, equipment, materials and substances used, and
  • the vehicles, buildings, structures that are workplaces.

The workers:

  • physical, emotional and mental capacities and needs.

Effective design of good work can radically transform the workplace in ways that benefit the business, workers, clients and others in the supply chain.

Failure to consider how work is designed can result in poor risk management and lost opportunities to innovate and improve the effectiveness and efficiency of work.

The principles for good work design support duty holders to meet their obligations under the WHS laws and also help them to achieve better business practice generally.

For the purposes of this handbook a work designer is anyone who makes decisions about the design or redesign of work. This may be driven by the desire to improve productivity as well as the health and safety of people who will be doing the work

The WHY Principles

Why is good work design important?

Principle 1: Good work design gives the highest level of protection so far as is reasonably practicable

  • All workers have a right to the highest practicable level of protection against harm to their health, safety and welfare.
  • The primary purpose of the WHS laws is to protect persons from work-related harm so far as is reasonably practicable.
  • Harm relates to the possibility that death, injury, illness or disease may result from exposure to a hazard in the short or longer term.
  • Eliminating or minimising hazards at the source before risks are introduced in the workplace is a very effective way of providing the highest level of protection.

Principle 1 refers to the legal duties under the WHS laws. These laws provide the framework to protect the health, safety and welfare of workers and others who might be affected by the work. During the work design process workers and others should be given the highest level of protection against harm that is reasonably practicable.

Prevention of workplace injury and illness

Well-designed work can prevent work-related deaths, injuries and illnesses. The potential risk of harm from hazards in a workplace should be eliminated through good work design.

Only if that is not reasonably practicable, then the design process should minimise hazards and risks through the selection and use of appropriate control measures.

New hazards may inadvertently be created when changing work processes. If the good work design principles are systematically applied, potential hazards and risks arising from these changes can be eliminated or minimised.

Information: Reducing the speed of an inappropriately fast process line will not only reduce production errors, it can diminish the likelihood of a musculoskeletal injury and mental stress.

Principle 2: Good work design enhances health and wellbeing

  • Health is a “state of complete physical, mental, and social wellbeing, not merely the absence of disease or infirmity” (World Health Organisation).
  • Designing good work can help improve health over the longer term by improving workers’ musculoskeletal condition, cardiovascular functioning and their mental health.
  • Good work design optimises worker function and improves participation enabling workers to have more productive working lives.

Health benefits

Effective design aims to prevent harm, but it can also positively enhance the health and wellbeing of workers for example, satisfying work and positive social interactions can help improve people’s physical and mental health.

As a general guide, the healthiest workers have been found to be three times more productive than the least healthy (PDF file). It therefore makes good business sense for work design to support people’s health and wellbeing.

Information: Recent research has shown long periods of sitting (regardless of exercise regime) can lead to increased risk of preventable musculoskeletal disorders and chronic diseases such as diabetes. In an office environment, prolonged sitting can be reduced by allowing people to alternate between sitting or standing whilst working.

Principle 3: Good work design enhances business success and productivity

  • Good work design prevents deaths, injuries and illnesses and their associated costs, improves worker motivation and engagement and in the long-term improves business productivity.
  • Well-designed work fosters innovation, quality and efficiencies through effective and continuous improvement.
  • Well-designed work helps manage risks to business sustainability and profitability by making work processes more efficient and effective and by improving product and service quality.

Cost savings and productivity improvements

Designing-out problems before they arise is generally cheaper than making changes after the resulting event, for example by avoiding expensive retrofitting of workplace controls.

Good work design can have direct and tangible cost savings by decreasing disruption to work processes and the costs from workplace injuries and illnesses.

Good work design can also lead to productivity improvements and business sustainability by:

  • allowing organisations to adjust to changing business needs and to streamline work processes by reducing wastage, training and supervision costs
  • improving opportunities for creativity and innovation to solve production issues, reduce errors and improve service and product quality, and
  • making better use of workers’ skills resulting in more engaged and motivated staff willing to contribute greater additional effort.
A diagram of the why principles
[Figure 1.1, Good Work Design Hleath Benefits]

The WHAT Principles

What should be considered by those with design responsibilities?

Principle 4: Good work design addresses physical, biomechanical, cognitive and psychosocial characteristics of work, together with the needs and capabilities of the people involved

  • Good work design addresses the different hazards associated with work e.g. chemical, biological and plant hazards, hazardous manual tasks and aspects of work that can impact on mental health.
  • Work characteristics should be systematically considered when work is designed, redesigned or the hazards and risks are assessed.
  • These work characteristics should be considered in combination and one characteristic should not be considered in isolation.
  • Good work design creates jobs and tasks that accommodate the abilities and vulnerabilities of workers so far as reasonably practicable.

All tasks have key characteristics with associated hazards and risks, as shown in Figure 2 below:

Figure 2 – Key characteristics of work


Hazards and risks associated with tasks are identified and controlled during good work design processes and they should be considered in combination with all hazards and risks in the workplace. This highlights that it is the combination that is important for good work design.

Workers can also be exposed to a number of different hazards from a single task. For example, meat boning is a common task in a meat-processing workplace. This task has a range of potential hazards and risks that need to be managed, e.g. physical, chemical, biological, biomechanical and psychosocial. Good work design means the hazards and risks arising from this task are considered both individually and collectively to ensure the best control solutions are identified and applied.

Good work design can prevent unintended consequences which might arise if task control measures are implemented in isolation from other job considerations. For example, automation of a process may improve production speed and reduce musculoskeletal injuries but increase risk of hearing loss if effective noise control measures are not also considered.

Workers have different needs and capabilities; good work design takes these into account. This includes designing to accommodate them given the normal range of human cognitive, biomechanical and psychological characteristics of the work.

Information: The Australian workforce is changing. It is typically older with higher educational levels, more inclusive of people with disabilities, and more socially and ethnically diverse. Good work design accommodates and embraces worker diversity. It will also help a business become an employer of choice, able to attract and retain an experienced workforce.

Principle 5: Good work design considers the business needs, context and work environment.

  • Good work design is ‘fit for purpose’ and should reflect the needs of the organisation including owners, managers, workers and clients.
  • Every workplace is different so approaches need to be context specific. What is good for one situation cannot be assumed to be good for another, so off-the-shelf solutions may not always suit every situation.
  • The work environment is broad and includes: the physical structures, plant and technology, work layout, organisational design and culture, human resource systems, work health and safety processes and information/control systems.

The business organisational structure and culture, decision making processes, work environment and how resources and people are allocated to the work will directly and indirectly impact on work design and how well and safely the work is done.

The work environment includes the physical structures, plant, and technology. Planning for relocations, refurbishments or when introducing new engineering systems are ideal opportunities for businesses to improve their work designs and avoid foreseeable risks.

These are amongst the most common work changes a business undertakes yet good design during these processes is often quite poorly considered and implemented. An effective design following the processes described in this handbook can yield significant business benefits.

Information: Off the shelf solutions can be explored for some common tasks, however usually design solutions need to be tailored to suit a particular workplace.

Good work design is most effective when it addresses the specific business needs of the individual workplace or business. Typically work design solutions will differ between small and large businesses.

However, all businesses must eliminate or minimise their work health and safety risks so far as reasonably practicable. The specific strategies and controls will vary depending on the circumstances.

The table on the next page demonstrates how to step through the good work design process for small and large businesses.

Table 1 – steps in good work design for large and small businesses

Good design steps In a large business that is downsizing In a small business that is undergoing a refit
Management commitment Senior management make their commitment to good work design explicit ahead of downsizing and may hire external expertise.   The owner tells workers about their commitment to designing-out hazards during the upcoming refit of the store layout to help improve safety and efficiency.  
Consult The consequences of downsizing and how these can be managed are discussed in senior management and WHS committee meetings with appropriate representation from affected work areas.   The owner holds meetings with their workers to identify possible issues ahead of
the refit.  
Identify A comprehensive workload audit is undertaken to clarify opportunities for improvements.   The owner discusses the proposed refit with the architect and builder and gets ideas for dealing with issues raised by workers.  
Assess A cost benefit analysis is undertaken to assess the work design options to manage the downsizing.   The owner, architect and builder jointly discuss the proposed refit and any worker issues directly with workers.   
Control A change management plan is developed and implemented to appropriately structure teams and improve systems of work. Training is provided to support the new work arrangements.   The building refit occurs. Workers are given training and supervision to become familiar with new layout and safe equipment use.  
Review The work redesign process is reviewed against the project aims by senior managers.   The owner checks with the workers that the refit has improved working conditions and efficiency and there are no new issues.  
Improve Following consultation, refinement of the redesign is undertaken if required.   Minor adjustments to the fit out are made if required.  

Principle 6: Good work design is applied along the supply chain and across the operational lifecycle.

  • Good work design should be applied along the supply chain in the design, manufacture, distribution, use and disposal of goods and the supply of services.
  • Work design is relevant at all stages of the operational life cycle, from start-up, routine operations, maintenance, downsizing and cessation of business operations.
  • New initiatives, technologies and change in organisations have implications for work design and should be considered.

Information: Supply chains are often made up of complex commercial or business relationships and contracts designed to provide goods or services. These are often designed to provide goods or services to a large, dominant business in a supply chain. The human and operational costs of poor design by a business can be passed up or down the supply chain.

Businesses in the supply chain can have significant influence over their supply chain partners’ work health and safety through the way they design the work.

Businesses may create risks and so they need to be active in working with their supply chains and networks to solve work health and safety problems and share practical solutions for example, for common design and manufacturing problems.

Health and safety risks can be created at any point along the supply chain, for example, loading and unloading causing time pressure for the transport business.

There can be a flow-on effect where the health and safety and business ‘costs’ of poor design may be passed down the supply chain. These can be prevented if businesses work with their supply chain partners to understand how contractual arrangements affect health and safety.

Procurement and contract officers can also positively influence their own organisation and others work health and safety throughout the supply chain by the good design of contracts. 

When designing contractual arrangements businesses could consider ways to support good work design safety outcomes by:

  • setting clear health and safety expectations for their supply chain partners, for example through the use of codes of conduct or quality standards
  • conducting walk through inspections, monitoring and comprehensive auditing of supply chain partners to check adherence to these codes and standards
  • building the capability of their own procurement staff to understand the impacts of contractual arrangements on their suppliers, and
  • consulting with their supply chain partners on the design of good work practices.

Information: The road transport industry is an example of the application of how this principle can help improve drivers’ health and safety and address issues arising from supply chain arrangements. For example, the National Heavy Vehicle Laws ‘chain of responsibility’ requires all participants in the road transport supply chain to take responsibility for driver work health and safety. Contracts must be designed to allow drivers to work reasonable hours, take sufficient breaks from driving and not have to speed to meet deadlines.

The design of products will strongly impact on both health and safety and business productivity throughout their lifecycles. At every stage there are opportunities to eliminate or minimise risks through good work design. The common product lifecycle stages are illustrated in Figure 3 below.

Figure 3 – common product lifecycle

A diagram of common product lifecycle

Information: For more information on the design of structures and of plant see ‘Safe design of structures’ and Managing the risks of plant in the workplace and other design guidance on the Safe Work Australia website.

The good work design principles are also relevant at all stages of the business life cycle. Some of these stages present particularly serious and complex work health and safety challenges such as during the rapid expansion or contraction of businesses. Systematic application of good work design principles during these times can achieve positive work health and safety outcomes.

View the Bureau of Meteorology case study on fatigue management.

New technology is often a key driver of change in work design. It has the potential to improve the quality of outputs, efficiency and safety of workers, however introducing new technology could also introduce new hazards and unforeseen risks. Good work design considers the impact of the new initiatives and technologies before they are introduced into the workplace and monitors their impact over time.

Information: When designing a machine for safe use, how the maintenance will be undertaken in the future should be considered.

In most workplaces the information and communication technology (ICT) systems are an integral part of all business operations. In practice these are often the main drivers of work changes but are commonly overlooked as sources of workplace risks. Opportunities to improve health and safety should always be considered when new ICT systems are planned and introduced.

A diagram of the WHAT principles
[Figure 4, The ICT Triad]

The HOW Principles

Principle 7: Engage decision makers and leaders

  • Work design or redesign is most effective when there is a high level of visible commitment, practical support and engagement by decision makers.
  • Demonstrating the long-term benefits of investing in good work design helps engage decision makers and leaders.
  • Practical support for good work design includes allocation of appropriate time and resources to undertake effective work design or redesign processes.

Information: Leaders are the key decision makers or those who influence the key decision makers. Leaders can be the owners of a business, directors of boards and senior executives.

Leaders can support good work design by ensuring the principles are appropriately included or applied, for example in:

  • key organisational policies and procedures
  • proposals and contracts for workplace change or design
  • managers’ responsibilities and as key performance indicators
  • business management systems and audit reports
  • organisational communications such as a standing item on leadership meeting agendas, and
  • the provision of sufficient human and financial resources.

Good work design, especially for complex issues will require adequate time and resources to consider and appropriately manage organisational and/or technological change. Like all business change, research shows leader commitment to upfront planning helps ensure better outcomes.

Managers and work health and safety advisors can help this process by providing their leaders with appropriate and timely information. This could include for example:

  • identifying design options which support both business outcomes and work health and safety objectives
  • assessing the risks and providing short and long term cost-benefit analysis of the recommended controls to manage these risks, and
  • identifying what decisions need to be taken, when and by whom to effectively design and implement the agreed changes.

Principle 8: Actively involve the people who do the work, including those in the supply chain and networks

  • Persons conducting a business or undertaking (PCBUs) must consult with their workers and others likely to be affected by work in accordance with the work health and safety laws.
  • Supply chain stakeholders should be consulted as they have local expertise about the work and can help improve work design for upstream and downstream participants.
  • Consultation should promote the sharing of relevant information and provide opportunities for workers to express their views, raise issues and contribute to decision making where possible.

Effective consultation and co-operation of all involved with open lines of communication, will ultimately give the best outcomes. Consulting with those who do the work not only makes good sense, it is required under the WHS laws.

Information: Under the model WHS laws (s47), a business owner must, so far as is reasonably practicable, consult with ‘workers who carry out work for the business or undertaking who are, or are likely to be, directly affected by a matter relating to work health or safety.’ This can include a work design issue.

If more than one person has a duty in relation to the same matter, ‘each person with the duty must, so far as is reasonably practicable, consult, co-operate and co-ordinate activities with all other persons who have a duty in relation to the same matter’ (model WHS laws s46).

Workers have knowledge about their own job and often have suggestions on how to solve a specific problem. Discussing design options with them will help promote their ownership of the changes. See Code of practice on consultation.

Businesses that operate as part of a supply chain should consider whether the work design and changes to the work design might negatively impact on upstream or downstream businesses. The supply chain partners will often have solutions to logistics problems which can benefit all parties.

Principle 9: Identify hazards, assess and control risks, and seek continuous improvement

  • A systematic risk management approach should be applied in every workplace.
  • Designing good work is part of the business processes and not a one-off event.
  • Sustainability in the long-term requires that designs or redesigns are continually monitored and adjusted to adapt to changes in the workplace so as to ensure feedback is provided and that new information is used to improve design.

Good work design should systematically apply the risk management approach to the workplace hazards and risks. See Principle 4 or more details.

Typically good work design will involve ongoing discussions with all stakeholders to keep refining the design options.  Each stage in the good work design process should have decision points for review of options and to consult further if these are not acceptable. This allows for flexibility to quickly respond to unanticipated and adverse outcomes.

Figure 5 outlines how the risk management steps can be applied in the design process

Continuous improvements in work health and safety can in part be achieved if the good work design principles are applied at business start up and whenever major organisational changes are contemplated. To be most effective, consideration of health and safety issues should be integrated into normal business risk management.

Figure 5 – Steps in the good work design process

A diagram of steps in the good work design process

Principle 10: Learn from experts, evidence, and experience

  • Continuous improvement in work design and hence work health and safety requires ongoing collaboration between the various experts involved in the work design process.
  • Various people with specific skills and expertise may need to be consulted in the design stage to fill any knowledge gaps. It is important to recognise the strengths and limitations of a single expert’s knowledge.
  • Near misses, injuries and illnesses are important sources of information about poor design.

Most work design processes will require collaboration and cooperation between internal and sometimes external experts. Internal advice can be sought from workers, line managers, technical support and maintenance staff, engineers, ICT systems designers, work health and safety advisors and human resource personnel.

Depending on the design issue, external experts may be required such as architects, engineers, ergonomists, occupational hygienists and psychologists.

Information: If you provide advice on work design options it is important to know and work within the limitations of your discipline’s knowledge and expertise. Where required make sure you seek advice and collaborate with other appropriate design experts.

For complex and high-risk projects, ideally a core group of the same people should remain involved during both the design and implementation phases with other experts brought in as necessary.

The type of expert will always depend on the circumstances. When assessing the suitability of an expert consider their qualifications, skills, relevant knowledge, technical expertise, industry experience, reputation, communication skills and membership of professional associations.

Information:  Is the consultant suitably qualified?
A suitably qualified person has the knowledge, skills and experience to provide advice on the specific design issue. You can usually check with the professional association to see if the consultant is certified or otherwise recognised by them to provide work design advice.

The decision to design or redesign work should be based on sound evidence. Typically this evidence will come from many sources such as both proactive and reactive indicators, information about a new technology or the business decisions to downsize, expand or restructure or to meet the requirements of supply chain partners.

Proactive and reactive indicators can also be used to monitor the effectiveness and efficiency of the design solution.

Information: Proactive indicators provide early information about the work system that can be used to prevent accidents or harm. These might include for example: key process variables such as temperature or workplace systems indicators such as the number of safety audits and inspections undertaken.

Reactive indicators are usually based on incidents that have already occurred. Examples include number and type of near misses and worker injury and illness rates.

Useful information about common work design problems and solutions can also often be obtained from:

  • work health and safety regulators
  • industry associations and unions
  • trade magazines and suppliers, and
  • specific research papers.
A diagram of the HOW principles
[Figure 5.1, Sources of Work Design Information]

[Good Work Design] Summary

The ten principles of good work design can be applied to help support better work health and safety outcomes and business productivity. They are deliberately high level and should be broadly applicable across the range of Australian businesses and workplaces. Just as every workplace is unique, so is the way each principle can be applied in practice.

When considering these principles in any work design also ensure you take into account your local jurisdictional work health and safety requirements.

[END]

Back to Safe Design Page | Back to Home Page

Professional | Pragmatic | Impartial

Categories
Work Health and Safety

BREXIT Special – Video & Key Points

“It’s beginning to look a lot like BREXIT! La, La-la, la, la…”

BREXIT Special, Key Points:

  • Introduction. With BREXIT looming, British and Australian professionals may be thinking of working in each other’s countries;
  • Legislation. Our laws, regulations and codes of practice are quite similar;
  • Guidance. Try the UK Health and Safety Executive (HSE) or the Safe Work Australia websites – both are excellent;
  • Jurisdictions. This is complex in a federated state like Australia, so Brits need to do their homework;
  • Regulators. This varies by industry/domain – many are very similar, while some are quite different;
  • Cultural Issues: Australia vs. the UK. Brits and Aussies are likely to feel quite comfortable working in each other’s countries; and
  • Cultural Issues: Australia vs. the EU. There are some commonalities across the EU, but also dramatic differences.

See the ‘BREXIT Special’ full transcript here.

Back to the main WHS Page here | Back to the Home Page here.

Categories
Work Health and Safety

BREXIT Special – the Full Transcript

Hello, and welcome to The Safety Artisan, where you will find safety training resources and pragmatic, Professional and impartial advice therein. Well, let’s hope so anyway! It is Christmas Eve, the 24th of December 2019 and I have a special show for you today. What we have is a Brexit Christmas special for you, and the reason for that, as I’m sure you are aware, is events in the UK.

See the 45-minute video and key points here.

Topics

This is a free full-length show. I think it’s going to be about 30 minutes just to let you know; in those 30 minutes, we’re going to compare the British and Australian approaches to safety. We’re going to talk about the similarities and differences between Australian and British legislation. On the safety guidance that’s available from the various authorities the different jurisdictions in the UK and Australia. Jurisdiction is not really an issue in the UK but certainly is in Australia, so that’s something we really need to go through.

We’ll talk about regulators and the different approaches to regulation. And, finally, some cultural issues. I may mention the dreaded EU. It’s worth talking a little bit about that too because there are still significant links between the EU and the UK on how safety is done which Australians might find helpful.

Introduction

Now, where’s Michael Bublé when I need him to sing the song? It says it’s looking a lot like Brexit. With the Conservatives winning in the UK they’ve passed the Brexit act. It looks like it’s finally going to happen. Now whether you think that’s a good idea or not I’m not going to debate that, you’ll be pleased to hear – you’re sick of that, I’m sure.

There are going to be some safety professionals and other engineering professionals who were working in the EU. And who maybe won’t be able to do so easily anymore, and there might be some Brits thinking well maybe this is an opportunity. This is a prompt for me to think about moving to Australia and seeing what life is like there. Conversely, there may be Aussies seeking opportunities in the UK because if the flow of professionally qualified Engineers and so forth from the EU countries dries up or slows down then there might be more opportunity for Aussies. Indeed, the UK has been talking about introducing an Australian-style points-based immigration system. And I think we might see a favourable treaty between UK and Australia before too long.

What have I got to contribute here? I spent quite a few years in the UK as a safety engineer and safety consultant and I worked on a lot of international projects. I worked on a lot of UK procurements of American equipment. And I also worked very closely with German, Italian and Spanish colleagues on the Eurofighter Typhoon for thirteen years on and off. And I have quite a bit of experience of working in Germany and some of working with the French. I’ve got I think quite a reasonable view of different approaches to safety and how the UK differs from and is like our European counterparts.

Also, seven years ago I emigrated to Australia. I went through that points-based process, fortunately with a firm to back me up. I made the transition from doing UK-style safety to Australian-style safety.

Let’s get on with it.

Legislation #1

There are very many similarities between Australian and UK approaches to safety. Australia has learned a lot from the UK and continues to be very close to the UK in many ways, particularly in our style of law and legislation. But there are differences and I’m mainly going to talk about the differences.

First of all in the UK we’ve had the Health And Safety At Work (HSAW) Act around since 1974. That’s the executive Act that sets up the Health and Safety Executive the HSE as a regulator, gives it teeth and enables further legislation and regulations. Now if I was still in the UK, the next thing we would talk about would be in any discussion about health and safety at work would be the ‘six-pack’.

Now, these were six EU directives that the UK converted into UK regulations, as indeed all EU member states were required to. Incidentally, the UK was very successful in influencing EU safety policy, so it’s a bit ironic that their turning their back on that.  What will you find in the six-pack?

First of all, the regulations on management of health and safety at work otherwise known as HSG65 and there’s a lot of good advice in there on how to do risk management that is broadly equivalent, for an Aussie audience, to the Risk Management Code Of Practice: similar things in there that it’s trying to achieve. Then we’ve got the Provision and Use of Work Equipment Regulations or PUWER for short. That says if you provide equipment for workers it’s got to be fit for purpose. Then there are regulations on manual handling, on workplace health safety and welfare, on personal protective equipment at work, and on the health and safety of display screen equipment of the kind that I’m using here and now (I’m sat in my EU-standard computer chair with five legs and certain mandatory adjustable settings).

Now Aussies will be sat there looking at this list thinking it looks awfully familiar. We just package them up slightly differently.

There’s also, it should be said, a separate act called the Control Of Major Accident Hazards or COMAH as it’s known. And that was introduced after the Piper Alpha disaster in the North Sea which claimed 167 lives in a single accident. That covers big installations that could cause a mass-casualty accident. So that’s the UK approach.

Legislation #2

Now the Australian approach is much simpler. The Aussies have had time to look at UK legislation, take the essentials from it and boil it down in into its essence quite cleverly. There is a single Work Health and Safety (WHS) Act, which was signed up in 2011 and came into force on the 1st of January 2012. And there are a single set of WHS Regulations that go hand in hand with the Act.

And they cover a wide spectrum of stuff. A lot of the things in the UK that you would see covered in different acts and different regulations are all covered in one place. Not only does it address, as you would expect, the workplace responsibilities of employers and employees etc., but there are also upstream duties on designers and manufacturers and suppliers and importers and so forth. The WHS act pulls all these things together quite elegantly into one.

It’s a very readable act. I have to say it’s one of the few pieces of legislation that I think a non-lawyer can read and make sense of. But you’ve got to read what it says not what you think it says (just a word of caution).  The regulations cover Major Hazard Facilities, rather like the COMAH regulations, so they’re all included as well.

It’s worth noting that Australian WHS, unlike the UK, does not differentiate between safety and security. If somebody gets hurt, then it doesn’t matter whether it is an accident or whether it was a malicious act. If it happens to a worker, then WHS covers it. And that puts obligations on employers to look after the security of workers, which is an interesting difference, as the UK law generally does not do that. We’re seeing more prosecutions (I’m told by the lawyers) for harm caused by criminal acts than we are yet seeing for safety accidents.

And that’s the act and regulations. And it’s also worth saying that Australia has a system of Codes Of Practice just as the UK has Approved Codes Of Practice. Now that’s all I’m going to say for now. There are other videos and resources on the website that go into the Act and Regulations and COP. I’m going to do a whole series on all those things, unpacking them one by one.

Legislation #3

Let’s think about exceptions for a moment because the way that the UK and Australia do exceptions in their Health and Safety legislation is slightly different. In the UK, the Health and Safety at Work Act explicitly does not apply to ships and aircraft moving under their own power. That’s quite clear. That kind of division does not occur in Australia.

Also, the UK Health and Safety Act does not apply to special forces, or to combat operations by the armed forces, or to the work up to combat operations. Again, those exclusions do not exist in Australia. And then it’s also worth saying there are many other acts enforced by the UK HSE. It’s not just about HSAW, the six-pack and COMAH. There’s a lot of regs and stuff on mining and offshore, etc., you name it. The UK is a complex economy and there are lots of historical laws. Going back up to 100 years. I think the Explosives Act was in 1898, which is still being enforced.

Now Australia has a different approach. They’ve made a clean sweep; taken a very different approach as we’ll see later. And there are only really three explicit exclusions to the Act. It says that WHS doesn’t apply to merchant ships, which are covered by the Occupational Health and Safety (Maritime Industry) Act. So, merchant ships aren’t covered, and WHS doesn’t apply to offshore petroleum installations either. More on that later.

There is a separate act that deals with radiation protection, and that is enforced by the ARPANSA, the Australian Radiation and Nuclear Safety Protection Agency. So, [HSAW and WHS have] a slightly different approach to what is covered and what is not; but very similar in the essentials.

Legislation #4

One of those essentials is the determination of how much safety is enough. In the UK the HSE talks about ALARP and in Australia the Act talks about SFARP. This quote here is directly from the UK HSE website. Basically, it says that ALARP and SFARP are essentially the same things. And the core concept, what is reasonably practicable, is what’s defined in the WHS Act.

Now it’s worth mentioning that the HSE say, this because it was the HSE who invented the term ALARP. If you look in UK legislation you will see the term SFARP, and you’ll see other terms like ‘all measures necessary’. There are various phrases in UK laws to say how much is enough, and the HSE said it doesn’t matter what it says in the law, the test we will use is ALARP and it covers all these things. It was always intended to be essentially the same as SFARP.

Now there is some controversy in Australia about that, and some people think that ALARP and SFARP are different. The truth is that in Australia, as in the UK, some people did ALARP badly. They did it wrong. If you do ALARP wrong, it’s not the same as SFARP, it’s different. But if you’re doing ALARP properly it is the same. Now, there are some people who will die in a ditch in order to disagree with me over that but I’m quoting you from the HSE, who invented the term to describe SFARP.

It’s also worth noting that WHS uses the term SFARP, but the offshore regulator, which is the National Offshore Petroleum Safety and Environmental Management Agency (NOPSEMA), they use the term ALARP, because they’ve got a separate act from WHS for enforcing safety on offshore platforms. But again, even though they’re using ALARP, it’s the same as SFARP, if you look at the way that NOPSEMA explain ALARP.  They do it properly. And it matches up with SFARP, in fact, that NOPSEMA guidance is very good.

Guidance

We’ll talk more on regulators, but first a little aside and you’ll see why in a moment. Before we can get to talking about regulators, I need to tell you about where you can get guidance in Australia.

Now in the UK, you’ve got the HSE, who is the regulator and they also provide a lot of guidance. Any safety Engineer in the UK will immediately think of a document called R2P2, which is short for ‘Reducing Risk, Protecting People’. That’s an 80-something page document, in which the HSE explain their rationale for how they will enforce safety law and safety regulations and what they mean by ALARP and so on. There’s also a lot of guidance on their website as well, which is excellent and available under a Creative Commons licence so you can do an awful lot with it.

In Australia, it’s a little bit more complex than that. The WHS act was drafted by Safe Work Australia, which is a statutory agency of the government. It’s not a regulator, but it was the SWA who developed the Model WHS Act, the Model Regulations and the Model Codes Of Practice. (More on that in just a second.) It’s Safe Work Australia that provides a lot of good guidance on their website.

Most Australian regulators will refer you to legislation [i.e. not their own guidance]. We’ve got a bit of an American approach in that respect in Australia, in that you can’t do anything without a lawyer to tell you what you can and can’t do. Well, that’s the way that some government agencies seem to approach it. Sadly, they’ve lost the idea that the regulator is there to bridge the gap and explain safety to ordinary people so they can just get on with it.

Now some regulators in Australia, particularly say the New South Wales state regulator or Victorian state regulator do provide good guidance for use within their jurisdiction. The red flashing lights and the sirens should be going off at this point because we have a jurisdiction issue in Australia, and we’ll come onto that now.

Jurisdictions

In the UK, it’s reasonably simple. You’ve got the HSE for England and Wales, you’ve got the HSE for Scotland and you’ve got the HSE for Northern Ireland. They are enforcing essentially the same acts and the same regulations, right across the United Kingdom. Now there are differences in law: England and Wales have a legal system; Scotland has a slightly different legal system; then Northern Ireland has peculiarities of its own. But they’re all related. There are historical reasons why the law is different, but, from a safety point of view, all those three regulators do the same thing. And work consistently.

In Australia, it’s a bit different. Australia is a Federated Nation. We have States and Territories as you can see, we’ve got Queensland, New South Wales and Victoria. Within New South Wales we’ve got the ACT, that’s the Australian Capital Territory, and Canberra is the Australian Federal capital.

Most Australians live on that East Coast, down the coast of Queensland NSW and Victoria. Then we’ve got Tasmania, South Australia, the Northern Territory and Western Australia. All those states and territories have and enforce their own Safety Law and Regulations.

On top of that, you’ve got a Federal approach to safety as well. Now, this will be a bit of a puzzle to Brits, but in Australia, we call the national government in Canberra ‘the Commonwealth’. Brits are used to the Commonwealth being 100+ countries that used to belong to the UK, but now they’re a club. But in Australia, the Commonwealth is the national government, the Federal Government.

Regulators #1

Let’s talk about regulators, starting at the national level. If you look at the bottom right-hand corner, we have got Comcare. They are the national regulator, who enforce WHS for The Commonwealth of Australia, [Which is] all Federal workplaces, Defence, any land that’s owned by The Commonwealth, and anything where you’ve got a national system. You’ve also got some nationalised or semi-nationalised industries that effectively belong to the Commonwealth, or are set up by national regulations, and they operate to the Commonwealth version of WHS

Then you’ve got the Northern Territory, Tasmania, South Australia, Queensland, New South Wales and the Australian Capital Territory. All those states and territories have their own versions of the Model WHS Act, Regulations and COP. They’re not all identical but they’re pretty much the same. There are slight differences in the way that things are enforced, for example in South Australia there’s a couple of Codes Of Practice that Work Safe SA have said they will not enforce.

These differences don’t change the price of fish. All these regulators have their own jurisdiction, and they’re all doing more or less the same thing as Commonwealth WHS. If you start with the Model WHS Act or the Commonwealth version, then you won’t be far off what’s going on in those states and territories. However, you do have to remember that if you’re doing non-Commonwealth work in those states and territories, you’re going to be under the jurisdiction of the local state or territory regulator.

That’s the easy bit!

Unfortunately, not all states have adopted WHS yet. Western Australia (bottom left-hand corner) they are going to implement WHS but it’s not there yet. Currently, in December 2019 they’re heading towards WHS, but they’re still using their old Occupational Health and Safety (OS&H) Legislation from about 1999, I think.

Victoria has decided that they’re not going to implement WHS. Even though everybody agreed they would [change to WHS], they’re going to stick with their Occupational Health and Safety at work Act, which again I think dates from something like 1999. (These acts are amended and kept up to date.)  Victoria has no plans to implement WHS.

You, like me, might be thinking what a ridiculous way this is to organise yourself. We’re a nation of less than twenty-five million people, and we’ve got all this complexity about regulators and how we regulate and yes: it is daft! Model WHS was an attempt to get away from that stupidity. I have to say it’s mostly been successful, and I think we will get there one day, but that’s the situation we’ve got in Australia.

Regulators #2

Now, a quick little sample of regulators in the UK and Australia just to compare. I can’t go through them all, because there are a lot. I wanted to illustrate the similarities and differences; there are many similarities for Brits coming to Australia or Aussies going to the UK. You will find a regulatory system that in most part looks and feels familiar.

In the UK, for example, you’ve got the Civil Aviation Authority, who regulate non-military flying, airports etc; in Australia, you’ve got the Civil Aviation Safety Authority, which does almost the same thing. In the UK you’ve got the Air Accident Investigation Branch, who do what their name implies; in Australia, you’ve got the Australian Transportation Safety Bureau, who also investigates air accidents (they do maritime accidents as well). By the way, the ATSB in Australia is somewhat modelled on the American ATSB, with a very similar approach to the way they do business.

Now when we get onto the maritime side, it’s quite different. In the UK, you’ve got the Maritime and Coastguard Agency or MCGA. They regulate Civil Maritime Traffic and health and safety on merchant ships; they also investigate accidents. In Australia, don’t forget we’ve got the ATSB looking at maritime accidents and publishing statistics. We’ve then got the Australian Maritime Safety Authority, the AMSA, who look at the design aspects of safety of ships. (These are all national / Federal / Commonwealth regulators, by the way.) You’ve then got ‘Sea Care’, who look at the OH&S workplace aspects of working on merchant ships.

Then separately [again] we’ve got the National Offshore Petroleum Safety and Environmental Management Authority NOPSEMA, who look after oil rigs and gas rigs, that sit more than three nautical miles offshore. Because if they’re inside three nautical miles then that’s the jurisdiction of the local state or territory.

Indeed, NOPSEMA is evidence of the Federal government trying to get all the states and territories to come together.  They succeeded with WHS but with the offshore stuff, the states and territories refused to cooperate with the Commonwealth. (This is a common theme in Australia. The different branches of the government seem to delight in fighting each other rather than serving the Australian public.) The Commonwealth decided Australia could not develop an offshore industry on this basis – it wasn’t going to happen. So, they unilaterally set up NOPSEMA. Bang. Suck on that states and territories.

Culture

Let’s look a little bit at culture. Let’s face it, Australians, Brits and Americans in many ways are very similar. We have an Anglo-Saxon approach to things, and Australian and British law is very similar. We also have a similar sense of humour, which is very important when trying to do safety

You’ve got the five eyes countries – Australia, New Zealand, the UK, the US and Canada – who have worked closely together for several decades. There’s a lot of commonality between these English-speaking countries that have a common Anglo-Saxon colonial past.

However, the big difference in Australia is that we are much more heavily influenced by the US than the UK is. You’ll find a lot of a US-style ‘certification against specification’ in Australia in different industries. That’s subtly different to the UK and Australian legal approach, which is based on ‘safety by intent’. This idea is that safety is achieved by keeping people safe [managing risk in the real world], where a contract specification means very little. Are people kept safe? That’s the essential idea behind UK and Australian law. It’s a bit that’s a bit different to the sort of American approach of you know specifications and requirements.

There’s nothing wrong with either approach, they’re just different, but mixing them together does cause confusion. In the UK if you work, as I did for most of my working life, in the aviation industry, it is an international enterprise and it uses a US-style safety-by-specification and certification approach because civil aviation is essentially US-led. (From the 1944 Chicago convention onwards.) It’s important to understand the difference, and there’s a lot more of this US certification influence in Australia.

Summary

We’ve talked about some different aspects. I can’t go into detail on everything, as I simply don’t know all the details on everything, as I’m not an expert in it all domains. Nobody is. But I hope I’ve given you a useful overview of differences for British engineers wanting to be aware of safety in Australia, and Aussies wanting to go to the UK.

Cultural Issues: UK versus the EU

It’s also worth having, while we’re on the subject, just one slide on the EU, because the UK has been part of the EU for a long time. UK legislation has been heavily influenced by the EU and vice versa. As I said earlier, the UK has been quite successful in influencing EU directives, which the UK that turns into regulations as the other EU nations do. That’s the second bullet point. If you go work in the EU, you should find local laws that implement the EU directives in common with the UK.

The big difference between the UK and the other EU states is the ALARP measure of how much safety is enough, and that is unique to the UK. So much so, that other EU nations took the UK to the European Court of Arbitration saying that ALARP was a sort of anti-competitive variation that shouldn’t be allowed. Now, they lost and ALARP stands in the UK, but just illustrates that there are some critical differences and ALARP is probably the most important one.

Back to the first bullet point. In English, we differentiate between safety and security. Now I’ve mentioned the UK HSAW does so but WHS does not do that (deliberately I guess), whether it’s accidental or harm or malicious harm you’ve got to protect your workers. However, in many European countries, the word for safety and security are the same. If you get to Germany, ‘Sicherheit’ means safety and security. In France it’s ‘securité’ and variations thereof in other romance languages, safety and security are the same words in many European languages.

Now having said that, a lot of these EU economies where you might be thinking of working, are modern economies with lots of internationally regulated stuff going on. The aviation industry, for example, but there are lots of advanced industries that are regulated in a similar way, right around the world. You’ll still find familiar concepts in different EU countries.

Now culturally, I’ve spent a lot of time working with Germans, who tend to come unstuck with the Anglo-Saxon approach to safety, because they have the mentality that they make things to work, not to fail. For German engineers especially, the Anglo-Saxon fixation with looking at how things could go wrong seems very strange. They often just don’t get it unless they’ve been in an industry like aviation, where that approach has been inculcated into them. Germans often don’t understand Australian WHS, because it’s just not their mentality. (They don’t build things to fail, they build them to work, so maybe ‘Safety-II’ will take off in Germany because of that.)

In France, I have to say the French are extremely competent engineers and they’re very good at safety. However, they do it their way they do it the French way, which is different to UK/Australia. Don’t expect the French to do it our way. They’re going to do it their way, and you need to learn, to understand what they do, how they do it and why they do it that way. France is in many ways a very nationalized country and it’s a national enterprise. Most engineers go through one system, and there is one top college for engineering in France.

There’s one and only one way of doing it in France, which may come as a bit of a shock to Aussies given our somewhat ‘here and there’ approach to regulation in Australia. The French are competent but don’t expect them to comply with the Aussie or UK way of doing things.

Now, I’ve said ‘variations across Southern Europe’, and I’m trying to be tactful here because a lot of the southern European approach to Safety is very variable. Sometimes I’ve been very impressed watching how, say, the Spanish do business, but in other countries like Italy the approach to safety can be a bit of a shocker. If you’re buying stuff from Italy, the contract may say they’ll do ‘x y z’ and they’ll produce safety reports. Just because they’ve said so, doesn’t mean a that it’s going to happen or that the stuff they produce is going to be worth the paper it’s written on, quite frankly. Some countries are very good in certain areas, but not so much in others.

Copyright Statement

Well, thanks for listening!  This presentation contains a little bit of information from the UK HSE and some from Safe Work Australia and I’ve produced that under the [appropriate] Creative Commons licenses. If you go to The Safety Artisan website you will see the details of the licenses.

The content of this video presentation is copyright The Safety Artisan, 2019. For more information, do please feel free to visit my Patreon Page, where all the safety training videos are available – a lot of free. Some you must pay a small fee to see and that’s it. www.Patreon.com/SafetyArtisan that’s the safety artisan page and then there are more resources at The Safety Artisan website.

It just remains for me to say stay safe and I’ll see you next month. Goodbye!

See the 45-minute video and key points here.

Back to the main WHS Page here | Back to the Home Page here.

Categories
Snapshot

Dear Friends and Colleagues

Dear Friends and Colleagues,

I am starting my own business, making online safety training videos, and I need your advice.

As many of you know, I’ve been a safety engineer for many years. That’s how many of us met. I enjoy the work and helping clients to achieve good solutions, but working for the public and private sectors has it’s frustrations.  Money, politics and sometimes oversized egos often manage to get in the way! I suspect that I am not alone in this experience.

So, I’ve decided to provide training on system safety and related topics online. Using the internet allows me to reach anyone, anywhere efficiently. Interested individuals can connect to quality training at their convenience while keeping the price affordable.  No corporations, no contracts, no middle management. Users can access training anonymously if they wish, so nobody needs to be embarrassed about what they don’t – yet – know.

I have started to post some resources on my website, and I would appreciate your honest feedback on what you find there.  

Friends and Colleagues: What do you wish you had learnt a bit earlier in your career? What would have helped you, your employer, your clients? What would help your less experienced colleagues?

Professional | Pragmatic | Impartial

Back to: Main Page